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Stably stratified viscous fluid in a container with vertical walls is initially at rest with 
tilted density surfaces, following a rotation of the container from its orientation when 
being filled. The initial state so generated is not in equilibrium, and the resultant 
motion will decay under the action of viscosity and of the diffusion of the salt 
producing the stratification. The timescales for the succession of stages by which 
equilibrium is attained are identified, and are found to depend on the strengths of 
the two diffusive processes, separately and interactively. 

1. Introduction 
If a stratified fluid is in a container with vertical walls, any initial distortion of 

the surfaces of constant density away from the horizontal will generate internal 
waves. The motion will continue until diffusive effects bring the fluid to a state of 
equilibrium in which it will be at rest with horizontal density surfaces. Of the two 
diffusive processes at work, viscosity and density diffusion, the former is usually the 
more active; the ratio of the respective diffusivities is about 560 for salt water, for 
example. The main purpose of this paper is to determine the timescales for the 
achievement of equilibrium in a geometrically simple configuration. The most 
important conclusion is that the motion decays in a timescale inversely proportional 
to the viscosity, as expected, but the timescale for the density surfaces to become 
horizontal also depends on a parameter involving both diffusivities. Either of these 
scales may be the larger, depending on the values of the diffusivities and other 
parameters. 

The corresponding problem when the walls of the container are not vertical is quite 
different. The state of the fluid in which the density surfaces are horizontal is then 
not an equilibrium state. The boundary condition on the density at the wall induces 
density gradients in the fluid; the resulting buoyancy layers were discussed by 
Phillips (1970) and Wunsch (1970). In  this paper only the vertical-wall case is 
considered. 

Before examining the later development of an initial state in which the density 
surfaces are inclined to the horizontal, it is necessary to see if it can be produced in 
a realistic manner. One possibility is to fill the container with its walls non-vertical 
and then rotate it to the desired orientation. This motion of the container will, in 
general, alter the disposition of the fluid relative to the container, and mtiy result 
in a state in which the density surfaces are inclined to the horizontal and the walls 
are vertical. A translation of the container with an acceleration slow enough to avoid 
the excitation of internal waves will force the fluid to move rigidly with the container, 
and no tilting of the density surfaces will result. In  a rotation, however, the fluid 
cannot move rigidly with the container, since the movement of the boundarycan only 
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impart an irrotational motion to the fluid, assuming that the motion is sufficiently 
rapid for viscous action to  be ineffective. Such a rotation occurs in some laboratory 
experimentation with stratified fluids, and i t  then becomes necessary to estimate the 
extent of the resultant distortion of the density surfaces and the timescale for the 
re-establishment of equilibrium. The purpose of this paper is to provide a theoretical 
prediction of these two quantities. 

An example of an experiment in which a container was rotated is described by 
Thorpe (1968). His apparatus consisted of a long rectangular tank placed with the 
long walls horizontal and filled with stratified fluid. The tank was rotated to  an 
inclined position, and the density surfaces did not move relative to  the tank. The 
inclined density surfaces then induced a shear flow along the tank as the lighter fluid 
displaced the heavier fluid above it. I n  contrast, the initial state after the rotation 
considered here is when the density surfaces are neither horizontal nor vertical and 
the walls of the tank are vertical. The density imbalance produces internal waves 
without a bulk motion of the fluid, and these waves eventually decay. 

There are two parts to the investigation described here. I n  the first, the non-diffusive 
effect of a change in orientation of a rectangular container on the fluid inside i t  is 
evaluated. Since diffusive effects are ignored here, it is essential that both the rotation 
and the filling of the container take place over a time short compared with the time 
for a diffusive boundary layer to appear. I n  its pre-rotation position, the walls of the 
container will not be vertical, even for the special case of plane walls, and buoyancy 
layers of the type considered by Phillips (1970) and Wunsch (1970) will be produced, 
albeit quite slowly. The second, and more important, part of the paper concerns the 
subsequent behaviour of the fluid as internal waves are generated and decay under 
the action of the diffusion of both vorticity and density. The large difference in the 
strengths of these two diffusive processes leads to a variety of timescales for the stages 
through which the -motion passes on its way to  equilibrium and the identification of 
these timescales is the goal of the work described in $53 and 4. The paper ends with 
some further remarks and conclusions. 

2. Tilting of a rectangular container 
A long and wide rectangular tank is initially placed as shown in figure 1 ,  with its 

walls at an angle 8 to the vertical. If ( X ,  Y )  are Cartesian axes fixed relative to the 
tank, the walls are in the planes X = +a and the axis of rotation is normal to  the 
(X, Y)-plane. Throughout, the motion is two-dimensional, with no variation in the 
direction of the axis of rotation. The angular velocity imparted to the tank is o(t), 
so that the angle # ( t )  through which the tank is rotated is given by 

r t  

If the rotation lasts for a total time T ,  the total angle turned through is @ = $(T). 
The initial density distribution of the continuously and linearly stratified fluid is 

given by 
(2.2) 

where pc and p are positive constants. I n  the rotating frame fixed to  the container, 
we can write the velocity components (u, v) in the (2, y)-directions in terms of a stream 

(2.3) 
function $ so that 

po = p,-p(y cos8-x sin@, 

u = -  v=---. 
’ 3X 
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FIGURE 1. Sketch of the container and the surfaces of constant density before 
and after the container has been rotated through an angle 9. 

By making the rotation rate sufficiently large, we can ensure that the rotation is 
completed in a time less than the diffusive timescales identified in $3. Then the 
vorticity generated by the stratification and by viscosity are negligible, and i t  follows 
that 

V2@-2w = 0, (2.4) 

which simply states that the motion is irrotational in a frame fixed in space. When 
the rotation rate is large, the diffusion of density during the rotation can also be 
neglected and the density is advected with the fluid. Hence to determine the density 
distribution at time T, which is the objective in this section, it is necessary to find 
the displacement of an arbitrary fluid particle during the rotation. 

The boundary condition on @ is that @ = 0 on the boundary of the container, and 
the solution of (2.4) under this condition is simply given by 

$ = w(x2-a2), (2.5) 

u = o ,  v=-2wx. (2.6) 

The position (x, y) at time t of the fluid particle that is at (xT, yT) at time T is given 

(2.7) 

with the velocity components given by 

by 

x = XT,  y = YT+2xT JtT w(t1) dt1, 

and, if we use a suffix 0 to denote the position at t = 0, we see that 

XO = X T ,  yo = YT + 2@xT. (2.8) 

The initial density at an arbitrary point is given by (2.2), and so we find the density 
pT at time T of the fluid particle that is then at  (xT, yT) is given by 

PT = pc-~{(yT+2@xT) CoSe-xT sine}. (2.9) 

The isopycnals therefore remain planar throughout the rotation, and they are 
inclined at an angle Y to the x-axis after the container has turned through an angle @, 
where 

tan Y = tanO-2@. (2.10) 
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To determine the orientation of the isopycnals in space, we must add to the angle 
Y the angle through which the container has rotated and subtract the initial 
inclination of the x-axis to the horizontal. Thus the angle a through which the 
isopycnals have been tilted by the rotation of the container is given by 

a = @-13++an-~(tan8-24)). (2.11) 

The experiments conducted by Thorpe (1 968) correspond to the special case 8 = in. 
Then a = @, and the isopycnals rotate with the container. This does not mean, of 
course, that the fluid is rotating with the container. The fluid moves parallel to the 
container walls, and there is no density variation in this direction. In recent 
experiments by Dr P. F. Linden and Dr J. E. Simpson (private communication) a 
tank with walls initially vertical was rotated through 90'. The prediction of (2.11) 
in this case is that 

(2.12) 

which is confirmed by the observations made by Linden and Simpson. 
The case of interest in $3 is when the container is rotated until the walls are vertical. 

Thus @ = 8, and (2.11) gives the result 

a = tan-'(tan8-28). (2.13) 

For values of 8 < 66.78' the isopycnals are displaced in the sense opposite to the 
rotation, with a maximum deflection of 29.7" when 8=45O. For 8 >  66.78' the 
deflection follows the sense of the rotation, and the inclination of the isopycnals 
increases rapidly; they become vertical when 8 = 90". 

It should be noted that the state of the fluid after the rotation is given by the 
density distribution determined in the above analysis and that there is no resultant 
motion. In  reality, there will be a small residual velocity because of the weak action 
of viscosity at the boundary, where vortex sheets of opposite strengths have been 
generated by starting and stopping the rotation. With sufficiently rapid rotation these 
vortex sheets almost cancel, and the resultant motion can be ignored. 

a = in-tan-lx = 17.6', 

3. Decay of sloshing motion in a container with vertical walls 
At the end of $2 we obtained an expression for the tilt of the density surfaces in 

a rectangular container when it was rotated until the walls became vertical. We now 
consider how this initial state develops with time, the container being held stationary. 
The tilted density surfaces initiate a sloshing motion of the fluid, which is damped 
by viscosity. If this is the only diffusive process acting, the fluid in contact with the 
wall retains its initial density, since i t  does not move relative to the wall. Hence large 
density gradients are induced close to the wall. Although the diffusion of the material 
producing the stratification is much weaker than the diffusion of vorticity by 
viscosity, these large density gradients indicate that density diffusion cannot be 
neglected. In  this section we consider the effects of both diffusive processes, and, in 
particular, determine the timescales for the different stages by which an equilibrium 
state is attained. 

The problem to be studied as a simple example for which the important processes 
can be identified is as follows. We suppose that the fluid is contained between the 
vertical walls X = f a ,  and that the initial density is given by 

R = p,-pcpI( Y-X tana)/a, (3.1) 

so that the density surfaces are inclined at  an angle a to the horizontal, and that the 
fluid is initially at rest. The reference density pc and the density stratification /3' are 
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constants. The dimensional spatial variables X (horizontal) and Y (vertical) and the 
time T' are made non-dimensional by writing 

X=ax, Y=ay ,  T'= (P?)'t. - 

The velocity components (U, V )  in the (X, Y)-directions are written as 

( U ,  V )  = ( F g a ) t  t ana  (u ,v ) ,  (3-3) 

and the pressure P and density R as 

P = Pc -pc g Y +pc /3'ga tan a p, 

R = pc-pc/3'(Y-a tanap)/a ,  

so that p and p are the non-dimensional measures of the perturbation to the pressure 
and density fields associated with the basic vertical stratification. If we make the 
Oberbeck-Boussinesq approximation, assuming that variations of density in the 
Naviel-Stokes equations are only important in the buoyancy term, and that the 
diffusion coefficients can be regarded as constants, the equations satisfied by the 
dependent variables u, v, p and p are 

where 

au aP 
at ( E E) ax 
av aP 
at ( iz :;) ay 

( Z  $) aP 
at 

-+tana u-+v- = --+hV%, 

-+tana u-+v- = ---+A Vav-p, 

-+tana u-+v- = p V 2 p + ~ ,  

au av 
ax ay -+- = 0, 

V K 

(3.7) 

(3.9) 

(3.10) 

The importance of the two diffusive processes is measured by the values of these 
two parameters. We shall only consider the case when these effects are both small, 
so that $ and p are small compared with unity, and we shall also assume that the 
diffusion of density is much weaker than that of vorticity, so that h % p. As 
mentioned previously, for salt water Alp, or Y / K ,  is approximately 560. The boundary 
conditions which the solutions of (3.6)-(3.9) must satisfy are 

u=w=O, aP - = 0  a t s = + l ,  (3.11) 
ax 

and the initial conditions are that, at time t = 0, 

u = v = o ,  p = x .  (3.12) 

These boundary and initial conditions and the equations themselves show that a 
solution is possible in which the velocity is vertical and the velocity and density 
depend only on the time t and the horizontal coordinate x. Thus we can write 

u = 0, 2, = v(5, t ) ,  p = p(x, t ) ,  (3.13) 
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and (3.6)-(3.9) then reduce to a pair of governing equations, which can be written 
as 

(3.14) 

(3.15) 

It is clear from these equations and conditions that v and p are odd functions of x, 
so the conditions (3.1 1 )  reduce to the following: 

- ( l , t ) = O ,  aP v ( l , t ) = O ,  
ax 

(3.16) 

p(0, t )  = 0, v(0, t )  = 0. (3.17) 

If we set h and p equal to  zero, we obtain the equations for the sloshing mode induced 
by the initial tilt of the density surfaces. In  the absence of diffusion, this motion 
persists indefinitely, and i t  is given by 

p = x cost, v = -x sint. (3.18) 

We now consider the effect of the two diffusive processes on this motion, concentrating 
first on the effect of viscosity. 

The viscous boundary layers 

If we ignore for the moment the effect of density diffusion, (3.14) and (3.15) must 
be modified by setting p = 0 and dropping the boundary condition on apP/ax. Also, 
since we are assuming that h is small, viscous effects will be confined initially to the 
vicinity of the wall. If we define a boundary-layer variable 6 by 

x = 1-hi.g (3.19) 

the leading-order equations in the boundary layer are 

v = -  aP 
at 

and the boundary and initial conditions are 

p = l  a t ( = O ,  

p - (1  -A@ cost 

p = 1-AiE 

as [+ 00, 

a t  t = 0. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The condition fixing the value of the density at the wall follows from (3.12), (3.16) 
and (3.20). 

The solution for small values o f t  can be found in terms of a similarity variable 

11 = .g-t (3.25) 

and an expansion of the form 

P = 9(11)+t%(11)+-.., (3.26) 
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but it is of little interest. More significant is the solution for values of t 4 1. It is 
convenient to write the density as the sum of two parts, p 1  and p2, both of which 
satisfy (3.21), but which separately satisfy only one of the non-homogeneous 
conditions (3.22) and (3.23). Thus 

and 

p1 = 0 at  ( = O ,  

p 1  - (1 cost as (+ 00, 

p2 = 1 at f ; =  0, 

p2+0 asf;+co. 

(3.27) 

(3.28) 

The solution for p1 for large t can be found in terms of the similarity variable 7 
already defined and an expansion of the form 

(3.29) 

The leading-order balance of terms in (3.21) is between the first and third terms. The 
equations for g and g1  are 

g ” + y g /  = 0, (3.30) 

(3.31) s; + 7s; + 2g, = ir”’ -fr!-77 

and the appropriate boundary conditions are 

g ( 0 )  = g l ( 0 )  = 07 g ( w )  = 1, gl(w) = 0. (3.32) 

The solutions of these equations are given by 

g = erf (7/24), (3.33) 

91 = (2x)-:(-3/3+c7) exp(-h2) ,  (3.34) 

where c is an arbitrary constant signifying the presence of an eigensolution at  this 
point in the expansion. This solution, and that valid for small t ,  represent the familiar 
diffusion from the boundary, the thickness of the layer being proportional to (At ) : .  
It becomes comparable to the width of the container, and the boundary-layer 
assumption ceases to hold, when t is of order A-l.  

For the second part of the solution, we can express p2 in terms of a new similarity 
variable 5 defined by 

5 = ( t i ,  (3.35) 

and the expansion of p2 for large t has the form 

P2 = f(5) + t-”fi(C) + * * *. (3.36) 

The equations for the leading terms are 

with boundary conditions given by 

(3.37) 

(3.38) 

(3.39) 
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The solution of (3.37) can be written as a Laplace integral in the form 

f = A 1 z-l exp ( Z ~ + Z - ~ )  dz, 
C 

where A is a constant and the contour C is such that 

(3.40) 

+z2 exp ( Z [ + Z - ~ )  = 0 (3.41) 

at both ends of C. There is an essential singularity at z = 0, and an acceptable solution 
that is bounded at infinity is given by choosing C to lie along the imaginary axis from 
- i s  to +is ,  with S positive, and closed in the half-plane Re z < 0. To determine the 
constant A, we apply the conditionf(0) = 1. With 5 > 0 and S large, Jordan’s lemma 
shows that the integral round the curved part of C tends to zero as S tends to infinity, 
so that we require that 

co 
lim A I, y-’ exp (icy- y-2) dy = 1, 
WJ 

(3.42) 

(3.43) 
i 

n c  
and hence f = -- z-l exp (z{+ z-~) dz. 

The value off(0) is given by 

f’(0) = -: exp ( z - ~ )  dz; (3.44) 

by replacing z by l /z ,  so inverting the contour, and after some manipulation, the 
integral can be written as 

If we now let S tend to infinity we obtain 

(3.46) 

To evaluatef(g) for large [, we first find the points of stationary phase of the integrand 
in (3.43), which are a t  

z = @ ,  ( 4 t e x p ( k y ) .  (3.47) 

We therefore deform the contour C to pass through the two complex roots, and take 
the path of steepest descent. The resulting expression fort([) is 

f([) - 283-&~-![-4 exp { -i(!j[)t} cos {+3i(!j[)$-$}. (3.48) 

Hence f has an oscillatory and exponential approach to zero as [ tends to infinity. 
This inner part of the boundary layer decreases in thickness as t increases, and when 

the first part has expanded to a width comparable to the width of the container, that 
is, when t is of order A-l, this second part has thinned to become of order h-l in 
thickness. The pinning of the value of the density a t  the wall to its initial value leads 
to an ever-increasing gradient of density at  the wall, as viscosity acts to damp out 
all motions in the interior. In  this second part of the boundary layer the leading 
balance of terms in (3.21) is between the second and third terms. 
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Combining these two parts of the viscous boundary layer, we find that the total 
boundary value of the density gradient is given by 

21 =-@-+T+A-t--tt A-? cost 2 
xt  ’ ax 2-1 

(3.49) 

to leading order and for large t. The large values reached by the second term in (3.49) 
as t increases indicate that it is not admissible to neglect the diffusion of density. For 
small t this second diffusive process is only effective within a thin boundary layer, 
with thickness proportional to pi when t is of order one. As t increases, this layer 
thickens and will eventually have the same thickness as the inner part of the viscous 
boundary layer; the structure of the solution will then change. We now consider first 
the density boundary layer before these two layers merge and secondly the solution 
after they have merged. 

The density boundary layer 

Equations (3.14) and (3.15) show that a boundary layer at the wall can exist, in which 
the density changes rapidly. The thickness of this layer is proportional to 4, and, 
for values oft % 1, the appropriate outer condition for this layer is provided by (3.49). 
In this layer the density gradient must be reduced from the value given by (3.49) 
to zero at the wall. It would, of course, be possible to consider the solution for values 
oft up to order one, but little that is not obvious would be learnt from doing so. For 
the values oft  of interest, it is only the second term on the right-hand side of (3.49) 
that is significant to leading order, and if we define a boundary-layer variable x by 

x = l-pix, (3.50) 

the leading-order equation derived from (3.14) and (3.15) has the form 

a3p a4p 
stay-ax"' 
-- 

The conditions applying to the solution of this equation are 

(3.51) 

(3.52) 

(3.53) 

where the appropriate part of (3.49) has been written in terms of the scaled variable. 
If we now define a similarity variable u by 

(7 = xt-!, (3.54) 

p = C u / A ) W 4 ,  (3.55) 

h(0) = - 1 ,  h’(0) = 0, h’(co) = -2x-4. (3.57) 

the solution can be written in the form 

where hi” +;ah” = 0, (3.56) 

The solution is easily found to be 

h = -2x-4a+x-fa exp (-icr2)-(1 +!pa”) erfc (+a), (3.58) 
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and the value of the density a t  the wall is then given by 

p = 1 - @/A) !  t .  (3.59) 

This solution is valid so long as the density boundary layer is thinner than the inner 
part of the viscous boundary layer. Since the thicknesses of the two layers are 
proportional to &t)t and ( A / t ) t  respectively, i t  follows that this solution is valid 
provided t 4 (A/p)k When t is of order (A/p)t the two layers have a thickness of order 
(Ap):. This suggests that, to examine the solution when the two layers merge, we 
should introduce new variables defined by 

z = l-(Ap)tq, t = - 7 ,  (Y 
with the scaled variables q and 7 both of order one. 

Equations (3.14) and (3.15) can be combined to give the single equation 

which, with the above scalings introduced, becomes 

a3p a4p 
p--+- = 0, 

a7 aq2 aq4 

(3.60) 

(3.61) 

(3.62) 

to leading order. The boundary conditions at q = 0 are, in terms of the scaled 
variables. 

(3.63) 

and, when 7 = 0, p = 1 at q = 0. A solution by means of a Laplace transform is easily 
found, and has the form 

(3.64) 

where A, = t(s+2):+38-2):, A, = &3+2)1-3s-2)12, (3.65) 

and the integral is taken along the imaginary axis. The quantities of most interest 
are the values of the density and the velocity gradient at the wall. The former is given 

esT 
ds = ecT, 

1 
(3.66) 

which agrees with (3.59) for small 7.  The velocity gradient a t  the wall is given by 

where use has been made of (3.15), and, from (3.64), we then deduce that 

Inversion of the transform finally gives the result that  

(3.67) 

(3.68) 

(3.69) 

The main features of the boundary layers have now been obtained, and we can 
proceed to  a discussion of the stages by which the fluid attains equilibrium. 
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4. Timescales for the attainment of equilibrium 
The initial tilt of the surfaces of constant density induces a sloshing motion with 

a period proportional to ( tg /a ) - ! ,  and this quantity has been chosen as the reference 
timescale. For values of t  of order one on this scale, the interior motion is bordered 
by thin layers at the walls. There is a viscous layer of width A: in which the interior 
velocity is reduced to zero a t  the wall, and a layer of width pi in which density 
diffusion is important and in which the density gradient at the wall is made zero. 
The density layer is much thinner than the viscous layer. As t increases, the viscous 
layer splits into two parts, one of which thickens with time, so that its width is 
proportional to (At$,  while the other thins, with its width being proportional to ( A / t ) t .  
The outer part is where the viscous damping of the interior motion is produced, and 
the inner part is characterized by the appearance of large density gradients near the 
wall. Also, as t increases to values large compared with one, the density layer grows, 
its width being proportional to Cut);. The description of the subsequent structure of 
the solution depends on whether the inner viscous layer and the density layer merge 
before or after the outer part of the viscous layer has grown so large that it is 
comparable in width to the size of the container. Since the merging of the two layers 
takes place when t is proportional to (Alp);, while the outer layer becomes as thick 
as the container when t is of order A-l,  the next stage in the development of the 
solution depends on whether AS is less than or greater than p. If A3 + p the density 
at  the wall, given by (3.66), is exponentially small in a time of order (Alp)+, but the 
viscous boundary layer then only occupies a small fraction of the container. Thus 
the large density gradients at the wall have disappeared, and the density there 
is reduced to zero, but there is still a considerable sloshing motion in the fluid, with 
a corresponding movement of the surfaces of constant density. It is only when the 
later time of order A-' has been reached that the damping of this motion is completed. 
If A3 % ,IX the reverse situation applies. When t is of order A-l the damping of the 
interior motion takes place, but the boundary value of the density has then been only 
slightly reduced from its initial value, and there are large density gradients near the 
wall. It is only when the later time of order (Alp); has been reached that the final 
equilibrium state is attained. The widths of the various layers, and their dependence 
on t are shown schematically in figure 2. 

Since the analysis of the motion has been carried out in boundary-layer terms, it 
has not been possible to give the solution when these layers are no longer thin. An 
alternative method of analysis would have been to use a Laplace transform of the 
complete equations and deduce from the resulting integral the existence of boundary 
layers. It would then have been possible to obtain the details of the final damping 
of the interior motion as well. But this does not add a great deal to the understanding 
of the way in which equilibrium is attained, and the boundary-layer approach is 
sufficient for the determination of the important processes involved. It is also easier 
to determine the boundary-layer scalings directly from the equations than by 
examination of the Laplace transform. 

5. Conclusions and comments 
We have seen how a contained stratified fluid may contain an initial distribution 

of density in which the density surfaces are tilted from the horizontal. For the special 
case of a long container with vertical walls, we have examined the way by which this 
initial state, and the fluid motion induced by it, are acted on by diffusive processes 
until an equilibrium state has been reached. The timescales for the attainment of 
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FIGURE 2. Sketch showing schematically the widths of the boundary layers near the wall when 
ha 4 p. For A3 % p the outer viscous layer has filled the interior (and lost its boundary-la er 
character) before the inner viscous layer and the density layer have merged, at time t = (h /p )  3 . 

equilibrium depend on both diffusivities, or rather on non-dimensional parameters 
proportional to them. The most important conclusion is that, in a laboratory 
experiment, it may not be sufficient only to wait until any transient motion in the 
fluid has disappeared before commencing the experiment. Even when all motion has 
ceased, there may still be regions near the container walls where the density is far 
from its equilibrium value. This situation occurs when h3 % p. Taking the values of 
h and p for salt water, for which h / p  = 560, this condition requires that h 9 8. 

Although we have dealt here only with a very simple initial state, the same 
processes would be active for an initial state in which the density surfaces were not 
plane and the fluid not at rest. The container has been chosen to have a simple shape, 
and other effects would be important for other containers. If the walls of the container 
are not vertical the effect of gravity in producing horizontal density surfaces and the 
effect of diffusion, which requires zero normal density gradients at the walls, are in 
conflict and a flux of fluid parallel to the wall will be produced. A mixing of the basic 
vertical density distribution assumed here would thus be produced, whereas with 
vertical walls it is only the end effects that can eventually cause this mixing. The 
absence of these boundary currents in the problem discussed here means that there 
is no interaction between the central portion of the container and its ends. The 
adjustment of the fluid to its equilibrium state near the ends probably involves the 
same processes that are important in the rest of the container, but the complex 
geometry makes it more difficult to analyse. There will, of course, be a gradual 
diffusion from the ends, where the vanishing of the density gradients will eventually 
affect the density distribution everywhere, but this is a very slow process. After a 
time of order p-l, which is much longer than any of the other timescales we have 
identified, the effect of the horizontal boundaries will only have spread into the 
container a distance of the same order as the container width, and so is negligible 
for a container much longer than it is wide. 
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The vertical density gradient has been assumed to be uniform. Any variation would 
produce a horizontal motion of the fluid, since the vertical velocity would then be 
height-dependent. The consequent advection of density would radically alter the 
structure of the flow, and the assumed uniformity is essential for the analysis 
presented here. 

There is often an analogy between stratified and rotating fluids. The corresponding 
problem to that examined here would be the establishment of a rigid rotation from 
an initial state in which there was a non-uniformity in the angular velocity. The 
adjustment would be produced by Ekman layers at  the walls. However, the analogy 
between the solutions of the two problems does not exist, since we are dealing with 
unsteady boundary layers. The diffusion of radial velocity and of angular velocity 
are of equal strengths, whereas the diffusion of density and of velocity in the problem 
considered here are of very different strengths. As Veronis (1970) points out, this is 
an example where the analogy does not apply. 

Finally, it should be pointed out that no attempt has been made to discuss the 
stability of the damped sloshing motion generated by the tilting of the density 
surfaces. The discussion of this motion can be regarded as confirming the stability 
of the equilibrium state of which it is a perturbation. But whether or not this motion 
can itself provide the energy source to fuel any other type of perturbed motion is 
an open question. 

A version of this paper was presented at  the Summer Institute in Geophysical Fluid 
Dynamics at Woods Hole Oceanographic Institute in 1984, and I am grateful to 
Professor Malkus for the invitation to attend the Institute. My thanks are due to Dr 
P. F. Linden and Dr J. E. Simpson for permission to quote from their as yet 
unpublished results and to the referees for their comments. 
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